Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Med Inform Assoc ; 28(9): 1885-1891, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34151985

RESUMO

OBJECTIVE: In electronic health record data, the exact time stamp of major health events, defined by significant physiologic or treatment changes, is often missing. We developed and externally validated a method that can accurately estimate these time stamps based on accurate time stamps of related data elements. MATERIALS AND METHODS: A novel convolution-based change detection methodology was developed and tested using data from the national deidentified clinical claims OptumLabs data warehouse, then externally validated on a single center dataset derived from the M Health Fairview system. RESULTS: We applied the methodology to estimate time to liver transplantation for waitlisted candidates. The median error between estimated date within the period of the actual true date was zero days, and median error was 92% and 84% of the transplants, in development and validation samples, respectively. DISCUSSION: The proposed method can accurately estimate missing time stamps. Successful external validation suggests that the proposed method does not need to be refit to each health system; thus, it can be applied even when training data at the health system is insufficient or unavailable. The proposed method was applied to liver transplantation but can be more generally applied to any missing event that is accompanied by multiple related events that have accurate time stamps. CONCLUSION: Missing time stamps in electronic healthcare record data can be estimated using time stamps of related events. Since the model was developed on a nationally representative dataset, it could be successfully transferred to a local health system without substantial loss of accuracy.


Assuntos
Registros Eletrônicos de Saúde , Funções Verossimilhança
2.
Front Digit Health ; 3: 797607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059687

RESUMO

Purpose: Clinicians rely on imaging features to calculate complexity of renal masses based on validated scoring systems. These scoring methods are labor-intensive and are subjected to interobserver variability. Artificial intelligence has been increasingly utilized by the medical community to solve such issues. However, developing reliable algorithms is usually time-consuming and costly. We created an international community-driven competition (KiTS19) to develop and identify the best system for automatic segmentation of kidneys and kidney tumors in contrast CT and report the results. Methods: A training and test set of CT scans that was manually annotated by trained individuals were generated from consecutive patients undergoing renal surgery for whom demographic, clinical and outcome data were available. The KiTS19 Challenge was a machine learning competition hosted on grand-challenge.org in conjunction with an international conference. Teams were given 3 months to develop their algorithm using a full-annotated training set of images and an unannotated test set was released for 2 weeks from which average Sørensen-Dice coefficient between kidney and tumor regions were calculated across all 90 test cases. Results: There were 100 valid submissions that were based on deep neural networks but there were differences in pre-processing strategies, architectural details, and training procedures. The winning team scored a 0.974 kidney Dice and a 0.851 tumor Dice resulting in 0.912 composite score. Automatic segmentation of the kidney by the participating teams performed comparably to expert manual segmentation but was less reliable when segmenting the tumor. Conclusion: Rapid advancement in automated semantic segmentation of kidney lesions is possible with relatively high accuracy when the data is released publicly, and participation is incentivized. We hope that our findings will encourage further research that would enable the potential of adopting AI into the medical field.

3.
Med Image Anal ; 67: 101821, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049579

RESUMO

There is a large body of literature linking anatomic and geometric characteristics of kidney tumors to perioperative and oncologic outcomes. Semantic segmentation of these tumors and their host kidneys is a promising tool for quantitatively characterizing these lesions, but its adoption is limited due to the manual effort required to produce high-quality 3D segmentations of these structures. Recently, methods based on deep learning have shown excellent results in automatic 3D segmentation, but they require large datasets for training, and there remains little consensus on which methods perform best. The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) was a competition held in conjunction with the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) which sought to address these issues and stimulate progress on this automatic segmentation problem. A training set of 210 cross sectional CT images with kidney tumors was publicly released with corresponding semantic segmentation masks. 106 teams from five continents used this data to develop automated systems to predict the true segmentation masks on a test set of 90 CT images for which the corresponding ground truth segmentations were kept private. These predictions were scored and ranked according to their average Sørensen-Dice coefficient between the kidney and tumor across all 90 cases. The winning team achieved a Dice of 0.974 for kidney and 0.851 for tumor, approaching the inter-annotator performance on kidney (0.983) but falling short on tumor (0.923). This challenge has now entered an "open leaderboard" phase where it serves as a challenging benchmark in 3D semantic segmentation.


Assuntos
Neoplasias Renais , Tomografia Computadorizada por Raios X , Estudos Transversais , Humanos , Processamento de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Neoplasias Renais/diagnóstico por imagem
4.
J Endourol ; 34(10): 1041-1048, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32611217

RESUMO

Objective: To understand better the public perception and comprehension of medical technology such as artificial intelligence (AI) and robotic surgery. In addition to this, to identify sensitivity to their use to ensure acceptability and quality of counseling. Subjects and Methods: A survey was conducted on a convenience sample of visitors to the MN Minnesota State Fair (n = 264). Participants were randomized to receive one of two similar surveys. In the first, a diagnosis was made by a physician and in the second by an AI application to compare confidence in human and computer-based diagnosis. Results: The median age of participants was 45 (interquartile range 28-59), 58% were female (n = 154) vs 42% male (n = 110), 69% had completed at least a bachelor's degree, 88% were Caucasian (n = 233) vs 12% ethnic minorities (n = 31) and were from 12 states, mostly from the Upper Midwest. Participants had nearly equal trust in AI vs physician diagnoses. However, they were significantly more likely to trust an AI diagnosis of cancer over a doctor's diagnosis when responding to the version of the survey that suggested that an AI could make medical diagnoses (p = 9.32e-06). Though 55% of respondents (n = 145) reported that they were uncomfortable with automated robotic surgery, the majority of the individuals surveyed (88%) mistakenly believed that partially autonomous surgery was already happening. Almost all (94%, n = 249) stated that they would be willing to pay for a review of medical imaging by an AI if available. Conclusion: Most participants express confidence in AI providing medical diagnoses, sometimes even over human physicians. Participants generally express concern with surgical AI, but they mistakenly believe that it is already being performed. As AI applications increase in medical practice, health care providers should be cognizant of the potential amount of misinformation and sensitivity that patients have to how such technology is represented.


Assuntos
Medicina , Robótica , Inteligência Artificial , Feminino , Humanos , Masculino , Minnesota , Opinião Pública , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...